Robust State of Charge Estimation for Hybrid Electric Vehicles: Framework and Algorithms
نویسندگان
چکیده
State of Charge (SoC) estimation is one of the most significant and difficult techniques to promote the commercialization of electric vehicles (EVs). Suffering from various interference in vehicle driving environment and model uncertainties due to the strong time-variant property and inconsistency of batteries, the existing typical SoC estimators such as coulomb counting and extended Kalman filter cannot perform their theoretically optimal efficacy in practical applications. Aiming at enhancing the robustness of SoC estimation and improving accuracy under the real driving conditions with noises and uncertainties, this paper proposes a framework consisting of (1) an adaptive-κ nonlinear diffusion filter to reduce the noise in current measurement, (2) a self-learning strategy to estimate and remove the zero-drift, (3) a coulomb counting algorithm to realize open-loop SoC estimation, (4) an H∞ filter to implement closed-loop robust estimation, and (5) a data fusion unite to achieve the final estimation by integrating the advantages of the two SoC estimators. The availability and efficacy of each component have been demonstrated based on comparative studies in simulation with the conventional approaches respectively, under the testing conditions of noises with various signal-noise-ratios, varying zero-drifts, and different model errors. The overall framework has also been verified to rationally and efficiently combine these components and achieve robust estimation results in the presence of kinds of noises and uncertainties. Energies 2010, 3 1655
منابع مشابه
Optimal power management of fuel cell hybrid vehicles
This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...
متن کاملA New Framework for Advancement of Power Management Strategies in Hybrid Electric Vehicles
Power management strategies play a key role in the design process of hybrid electric vehicles. Electric Assist Control Strategy (EACS) is one of the popular power management strategies for hybrid electric vehicles (HEVs). The present investigation proposes a new framework to advance the EACS. Dynamic Programming method is applied to an HEV model in several drive cycles, and as a result, some op...
متن کاملA new control strategy for energy management in Plug-in Hybrid Electric Vehicles based on Fuzzy Cognitive Maps
In this paper, a new control strategy for energy management in Plug-in Hybrid Electric Vehicles (PHEVs) using Fuzzy Cognitive Map (FCM) is presented. In this strategy, FCM is used as a supervisory control such that the State of Charge (SoC) of the battery is kept in the acceptable range and fuel consumption per kilometer is reduced, in addition to providing the request power. Since this method ...
متن کاملImproving the Energy Management of Parallel Hybrid Electric Vehicle by Dynamic Programming Using Electro-Thermal Model of Battery
In this paper, an offline energy management system (EMS) is proposed for parallel hybrid electric vehicles (HEVs). The proper energy management system is necessary for dividing torque between electrical motor and Internal Combustion Engine (ICE). The battery is a crucial component of hybrid electric vehicles and affects significantly the cost and the performance of the whole vehicle. The primar...
متن کاملNovel Battery SOC/SOP/SOH Estimation Algorithms in a Unified Framework
The performance of pure electric and hybrid electric vehicles highly depends on accurate and reliable knowledge of internal battery parameters. Specifically, parameters such as the state-of-charge (SOC), state-of-health (SOH) and state-of-power (SOP) are of particular interest. This paper presents new algorithms for estimating these three key parameters using an OCV-R-RC electrical equivalent c...
متن کامل